SETS:Intersection , Disjoint sets ,Union of two sets,Number of elements in Union and Intersection of sets.

Operations on sets

Intersection of two sets:

Suppose A and B are two sets. The set of all common elements of A and B is called the intersection of set A and B.
It is denoted as A
በ B and read as A intersection B.

A በ B = {x | x A and x B} .

Ex (1)  A = { 1, 3, 5, 7} ,   B = { 2, 3, 6, 8}                                           
The element 3 is common in set A and B.                                                á‰  B = {3}                                                                                                                           

Ex (2)   A = {1, 3, 9, 11, 13} , B = {1, 9, 11}

The elements 1, 9, 11 are common in set A and B.

በ B = {1, 9, 11} But B = {1, 9, 11}

በ B = B

Here set B is the subset of A.


If B ⊆ A then A á‰  B = B, similarly, if B á‰  A= B , then B   A.

                                          Remember this !
Properties of Intersection of sets

(1) A á‰  B = B á‰  A                         (2) If A   B then A á‰  B = A

(3) If A á‰  B = B then B   A         (4) A á‰    A and A á‰    B

(5) A á‰  A’=                 (6) A á‰  A= A                       (7) A á‰   =


Disjoint sets

Let, A = { 1, 3, 5, 9}

and B = {2, 4, 8} are given.

Confirm that not a single element is common in set

A and B. These sets are completely different from each other.

So the set A and B are disjoint sets. Observe its Venn diagram.

Union of two sets

Let A and B be two given sets. Then the set of all elements of set A and B is called the Union of two sets.
It is written as A
B and read as 'A union B'.

A B = {x | x A or x B}


Ex (1) A = {-1, -3, -5, 0}                                                     

B = {0, 3, 5}                                                                                     

A B = {-3, -5, 0, -1, 3, 5}                                            

Note that, A B = B A


Observe the Venn diagram and write the following sets 
using listing method.



              

(i) U    (ii) A     (iii) B                                                              

 (iv) A B     (v) A á‰  B  
                                          
               
(vi) A'   (vii) B'   (viii)(A
B)'                                                         
 (ix) (A 
በ B)'                                                                                    

Solution :   We Have,   U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}              A = {2, 4, 6, 8, 10},                  B = {1, 3, 5, 7, 8, 10}
Now  ,A U B ={1, 2, 3, 4, 5, 6, 7, 8, 10} ,      በ B = {8, 10}

A’ = {1, 3, 5, 7, 9, 11, 12} ,                B’ = {2, 4, 6, 9, 11, 12}

(A U B)’ ={9, 11, 12}  ,        (A á‰  B)’ = {1, 2, 3, 4, 5, 6, 7, 9, 11, 12}   

Ex (3)        A = {1, 2, 3, 4, 5}  ,   B = {2, 3}       


Let us draw its Venn diagram.                       


 A U B = {1, 2, 3, 4, 5} Observe that set A                                             
and A U B have the same elements.                                                   
Hence, if B  A then A U B = A                                      


                                   Remember this !

Properties of Union of sets

(1) A U B = B U A                      (2) If A  B then A U B = B

(3) A  A U B, B  A U B       (4) A U A’= U

(5) A U A= A                               (6) A U = A

Number of elements in Union and Intersection of
sets:

Let us consider the set A and set B as given above,

n (A) + n (B) = 5 + 6 = 11 ----(I)

A U B= {3, 6, 9, 12, 15, 18, 24, 30, 36} n (A U B) = 9--------(II)

To find A á‰  B means to find common elements of set A and set B.

በ B = {6, 12} n (A á‰  B) = 2--------(III)

In n (A) and n (B) elements in A á‰  B are counted twice.

  n (A) + n (B) - n (A á‰  B ) = 5 + 6 - 2 = 9 and n (A U B ) = 9

From equations (I), (II) and (III), we can write it as follows

  n (A U B ) = n (A) + n (B) - n (A á‰  B)




Verify the above rule for the given Venn diagram.




n (A) =               , n (B) =                                     A                 24                

n (A U B )=        , n (A á‰  B)=                     9        3     6        18     B

   n (A U B ) = n (A) + n (B) - n (A á‰  B)          15    12     30     36


      
                                       Remember this !

n (A U B ) = n (A) + n (B) - n (A á‰  B)

means n (A) + n (B) = n (A U B ) + n (A á‰  B)


Post a Comment

Previous Post Next Post

Contact Form