SETS: PROBLEM SET

SETS: PROBLEM SET

Question 1:

Choose the correct alternative answer for each of the following questions.

 

(i)   If M = {1, 3, 5},   N = {2, 4, 6}, then MN = ?

 (A) {1, 2, 3, 4, 5, 6}  (B) {1, 3, 5}  (C)  Ï•     (D) {2, 4, 6}

 

(ii)  P = { x | x is an odd natural number, 1 < x 5}
 How to write this set in roster form?

 (A) {1, 3, 5}  (B) {1, 2, 3, 4, 5} (C) {1, 3}  (D) {3, 5}


(iii) P = {1, 2, ........., 10}, What type of set P is ?

(A) Null set  (B) Infinite set  (C) Finite set  (D) None of these

 

(iv)   MN = {1, 2, 3, 4, 5, 6} and M = {1, 2, 4} then which of the following represent set N ?

 (A) {1, 2, 3}     (B) {3, 4, 5, 6}   (C) {2, 5, 6}  (D) {4, 5, 6}

 

(v)   If P M, then Which of the following set represent P  (P M) ?
 (A) P   (B) M   (C) PM  (D) P'  M


(vi)   Which of the following sets are empty sets ?

(A) set of intersecting points of parallel lines
(B) set of even prime numbers.

(C) Month of an english calendar having less than 30 days.

(D) P = { x  |   x  I, 1 <  x <  1}

ANSWER:

(i) We have,

M = {1, 3, 5}, N = {2, 4, 6}

MN =Ï• = Empty set

 So, the correct option is (C).

 

(ii) Since, P = {x | x is an odd natural number, 1 < x 5} = {3, 5}
  
So, the correct option is (D).


(iii) Since, the elements of set P = {1, 2, ..., 10} is finite.

So, set P is a finite set.


Hence, the correct option is (C).

 

(iv) We have, M  N = {1, 2, 3, 4, 5, 6} and M = {1, 2, 4}

Since, {1, 2, 3} 
 {1, 2, 4} = {1, 2, 3, 4}  M  N = {1, 2, 3, 4, 5, 6};
 

{3, 4, 5, 6}  {1, 2, 4} = {1, 2, 3, 4, 5, 6} = M  N = {1, 2, 3, 4, 5,6};

{2, 5, 6} 
 {1, 2, 4} = {1, 2, 4, 5, 6}  M  N = {1, 2, 3, 4, 5, 6}; and
{4, 5, 6} 
 {1, 2, 4} = {1, 2, 4, 5, 6}  M  N = {1, 2, 3, 4, 5, 6}
  
So, the correct option is (B).

 

(v) We have, P M,

Now, P  (P 
 M) = P  M = M         (Since, P  M = M; P M)


So, the correct option is (B).


(vi) Since,

the set of intersecting points of parallel lines = {};

the set of even prime numbers= {2};
  
the Month of an english calendar having less than 30 days = {February}; and


P = {x | x 
 I, 1 <  x <  1} = {0}

So, the correct option is (A).

Question 2:

Find the correct option for the given question.


(i)   Which of the following collections is a set ?

(A) Colours of the rainbow  (B) Tall trees in the school campus. (C) Rich people in the village    (D) Easy examples in the book


(ii)   Which of the following set represent N  W?

(A) {1, 2, 3, .....}   (B) {0, 1, 2, 3, ....}   (C) {0}    (D) { }


(iii)  P = {   |   x is a letter of the word ' indian'} then which one of the following is set P in listing form ?

(A) {i, n, d}  (B) {i, n, d, a} (C) {i, n, d, i, a} (D) {n, d, a}


(iv)   If T = {1, 2, 3, 4, 5} and M = {3, 4, 7, 8} then T
M = ?

(A) {1, 2, 3, 4, 5, 7}  (B) {1, 2, 3, 7, 8}
(C) {1, 2, 3, 4, 5, 7, 8}   (D) {3, 4}

ANSWER:

(i)

(A) Since, the colours of the rainbow are well defined such as Violet, Indigo, Blue, Green, Yellow, Orange and Red.
So, the collection of colours of the rainbow is a set.


(B) Since, the tall trees in the school campus are not well defined.

So, the collection of the tall trees in the school campus is not a set.

(C) Since, the rich people in the village is not well defined.
So, the colection of the rich people in the village is not a set.


(D) Since, the easy examples in the book is not well defined.
So, the collection of easy examples in the book is not a set.


(ii) Since, N 
 W = {1, 2, 3, 4, ...}

So, the correct option is (A).
 

(iii) Since, P = { x is a letter of the word 'indian'}


So, P = {i, n, d, i, a, n} = {i, n, d, a}
 

Hence, the correct option is (B).

 

(iv) Since, T = {1, 2, 3, 4, 5} and M = {3, 4, 7, 8}

So, T
M = {1, 2, 3, 4, 5, 7, 8}

Hence, the correct option is (C).


Question 3:

Out of 100 persons in a group, 72 persons speak English and 43 persons speak French. Each one out of 100 persons speak at least one language. Then how many speak only English ? How many speak only French ? How many of them speak English and French both ?

ANSWER:

Let A be the set of persons speaking English and B be the set of persons speaking French.

So, n (A) = 72; n (B) = 43; 
n (A ∪ B) = 100 n (A  B) = 100

Now,

n (A) + n (B) = n (A 
 B) + n (A ∩ B)

⇒ n (A ∩ B) = 72 +43 −100⇒ n (A ∩ B) = 15 So, the number of person who speak French and English both is 15. n (A ∩ B) = 72 +43 -100 n (A ∩ B) = 15 So, the number of person who speak French and English both is 15.

Also,

n (A) = n (A − B) + n (A ∩ B)n (A) = n (A - B) + n (A ∩ B)

⇒ n (A − B) = 72 − 15⇒ n (A − B) = 57 So, the number of person who speak only English is 57. n (A - B) = 72 - 15 n (A - B) = 57 So, the number of person who speak only English is 57.

And,

n (B) = n ( B − A) + n (A ∩ B)⇒ n (B − A) = 43 −15⇒ n (B − A) = 28 So, the number of person who speak only French is 28.
n(B) = n (B -A) + n (A ∩ B) n (B - A) = 43 - 15 n (B - A) = 28 So, the number of person who speak only French is 28.


Question 4:

70 trees were planted by Parth and 90 trees were planted by Pradnya on the occasion of Tree Plantation Week. Out of these; 25 trees were planted by both of them together. How many trees were planted by Parth or Pradnya ?

ANSWER:

Let A be the set of tress planted by Parth and B be the set of trees planted by Pradnya.

So, n (A) = 70; n (B) = 90; 
 n (A ∩ B) = 25

Now,

n (A) + n (B) = n (A
B) + n (A∩B)

n (A
B) = 70 + 90 - 25

(A
B) = 135

Hence, the number of trees planted by Parth or Pradnya is 135.


Question 5:

If n (A) = 20, n (B) = 28 and n (AB) = 36 then n (A  B) = ?

ANSWER:

We have,

n (A) = 20, n (B) = 28 and n (A
B) = 36

Since, n (A  B ) = n (A) + n (B) 
 n (A  B) = 20 + 28 - 36

 n (A  B ) = 12


Question 6:

In a class, 8 students out of 28 have a dog as their pet animal at home, 6 students have a cat as their pet animal. 10 students have dog and cat both, then how many students do not have a dog or cat as their pet animal at home ?

ANSWER:

We have,

Total number of  students = 28;

Students have a dog as their pet = 8;

Students have a cat as their pet = 6; and

Students have cat and dog both = 10

Solving using venn diagram, we get:


So, the number of students that do not have a dog or a cat as their pet is 4.


Question 7:

Represent the union of two sets by Venn diagram for each of the following.


(i) A ={3, 4, 5, 7}  B ={1, 4, 8}

(ii) P = {ab, c, ef}  Q ={lmn , eb}

(iii)  X = { x | x is a prime number between 80 and 100}

        Y = { y y is an odd number between 90 and 100 }

ANSWER:

(i) A ={3, 4, 5, 7}  B ={1, 4, 8}



(ii) P = {ab, c, ef}  Q ={lmn , eb}



(iii)  X = { x | x is a prime number between 80 and 100} = {83, 89, 97};

        Y = { y y is an odd number between 90 and 100 } = {91, 93, 95, 97, 99}



Question 8:

Write the subset relations between the following sets..


X = set of all quadrilaterals.  Y = set of all rhombuses.

S = set of all squares.  T = set of all parallelograms.

V = set of all rectangles.

ANSWER:

Since, all squares are rectangle, all rectangles are parallelogram, all parallelograms are quadrilateral; and all squares are rhombus, all rhombus are parallelogram, all parallelograms are quadrilateral.

So, the subset relations are:

S < V < T < X and S < Y < T < X


Question 9:

If M is any set, then write M ∪ Ï• and M∩ Ï•.

ANSWER:

If M is any set, then

 Ï•=M

and,

M ∩ Ï•=Ï•

Question 10:



Observe the Venn diagram and write the given sets
U, A, B, A 
 B, A  B

ANSWER:

(i) U = {1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13}

(ii) A = {1, 2, 3, 5, 7} 

(iii) B = {1, 5, 8, 9, 10}

(iv) A 
 B = {1, 2, 3, 5, 7, 8, 9, 10}

(v) 
  A∩B={1, 5}


Question 11:

If n (A) = 7, n (B) = 13, n (A  B )= 4, then n (A  B)=?

ANSWER:

We have,

n (A) = 7, n (B) = 13 and n (A  B) = 4

Since, n (A 
 B) = n (A) + n (B)  n (A  B) = 7 + 13  4

 n (A  B) = 16


Post a Comment

Previous Post Next Post

Contact Form